info
西门子:电池白皮书
行业动态
MORE...
应用案例
MORE...
技术前沿
MORE...
当前位置:首页 技术 正文
现代电动车辆中的电控技术
转载 :  zaoche168.com   2009年08月15日

    电动车由于储能设备容量有限,在运行过程中对电能流向管理十分严格。精确的电能管理可以延长车辆运行里程,减少电池充电频率,从而节约运行成本。车载能量管理系统需要随时监控电池电压、电机输出功率以及其它设备的用电情况。同时,电动车电子控制系统的动态信息必须具有实时性,各子系统需要将车辆的公共数据实时共享,如电机转速、车轮转换、油门踏板位置等。但不同控制单元的控制周期不同,数据转换速度、各控制命令优先级也不同,因此需要一种具有优先权竞争模式的数据交换网络,并且本身具有极高的通信速率。此外,作为一种载人交通工具,电动汽车必须具有极高的运行稳定性,整车通讯系统必须具有很强的容错能力和快速处理能力。

 

  德国Bosch公司为了解决现代车辆中众多的控制和数据交换问题,开发出一种CANControllerAreaNetwork)现场总线通讯结构,广泛应用在常规燃油汽车上,如BENZBMWPORSCHE。同时,CAN总线也被认为是电动车最佳通讯结构,我国“863计划”关于电动汽车的说明中已经明确提出,新申报的电动车开发项目必须采用CAN总线通讯模式。

 

  CAN总线结构是一种有效支持分布式控制或实时控制的串行通讯网络。图1为一个典型的电动汽车CAN总线结构示意图,包括整车动力部分的主电机控制器、电池组管理系统、人机界面显示系统等多个设备,这些子系统之间通过CAN进行数据通讯和命令传输。每个节点设备都能够在脱离CAN总线的情况下独立完成自身系统的运行,从而满足车辆运行安全性的需要。同时,CAN总线也不会因为某个设备的脱离而出现系统结构崩溃的现象。

 

  本文介绍的电动车用三相逆变电源属于图1中的车载辅助逆变电源。称为“辅助电源”是因为它的负载为电动车上的一些辅助交流电机,如汽车转向助力油泵、刹车气泵、冷却水循环中的水泵以及空调系统中的压缩机等。对该三相逆变电源的工作要求是:正常运行情况时独立维持辅助电机的稳定运行,能够根据上位机的指令适当调整工作状态;在负载发生故障(如电机短路)时迅速关系输出、安全关机,同时能够通过CAN总线向上位机和其它节点报告自身故障,引发车辆各系统的相关操作(例如:位于仪表台上的人机界面显示系统将立即显示警告信息,报告车辆故障部位,并提示驾驶员减速;而整车能量管理系统则发出命令关闭辅助逆变电源的输入,并将接收到的错误代码和当前运行参数进行保存,便于维修人员进行故障诊断)。

 

  由此看出,虽然选择一个通用变频器进行改装可以实现车用三相逆变电源的基本功能,但是要做成支持CAN总线各种功能的智能化节点必须从底层进行开发,直接选择支持CAN总线接口的控制芯片,在控制程序中集成CAN通讯功能,适应整车通讯的要求。

 

  1P8xC592芯片介绍

 

  在电动车用辅助逆变电源的设计中,控制电路不仅要支持CAN总线通讯,还要对负载电压、电流等模拟量进行检测,进行各种逻辑判断,并驱动其它芯片完成三相逆变功能。因此简单选择一个单独的CAN控制器是不够的,最方便的选择是使用带有在片CAN功能的控制器。

 

  P8xC592是由PHILIPS公司开发生产的8位微处理器,主要包括:

 

·一个80C51中央处理单元(CPU

·两个标准的16位定时/计数器

·包括四个捕获和三个比较寄存器的16位定时器/计数器

·具有8路模拟量输入的10A/D变换器

·两路分辨率为8位的脉冲宽度调制输出

·具有两级优先权的15个中断源

·五组8I/O端口和一组与A/D变换器模拟量输入共用的8位输入口

·与内部RAM进行DMA数据传送的CAN控制器

·具有总线故障管理功能的1MbpsCAN控制器

·与标准80C51兼容的全双工UART

 

  P8xC592共有68个管脚,其中包括68I/O口,P0P380C51相同,但P1可以用作一些特殊功能,包括4个捕获输入端、外部计数器输入端、外部计数器复位输入端和CAN接口的CTX0CTX1输出端。并行I/OP4的功能与P1P2P3相同。P5口是不是有输出功能的并行输入口,主要用作A/D变换器的模拟量输入端。

 

  P8xC592内含CAN控制器,包括为实现高性能串行网络通信所必需的所有硬件,从而能够控制通信流顺利通过CAN协议的局域网。为了避免出现混乱,芯片中增加的CAN控制器对于CPU是作为能够双方独立工作的存储器映像外围设备出现的,即可以把P8xC592简单设想为两个独立工作器件的集成体。如果关闭CAN控制器部分的功能,该芯片可以仅作为带有模拟量A/D转换的普通8位单片机使用。

 

启用CAN控制器的功能,主要借助四个特殊功能寄存器(SPR)实现,CPUCAN控制器的控制及其访问都通过它们完成,接口结构如图2所示。这四个特殊功能寄存器分别为:(1)地址寄存器(CANADR),CPU通过CANADR/CAN控制器的验收码寄存器;(2)数据寄存器(CANDAT),CANDAT对应由CANADR指向的CAN控制器内部寄存器;(3)控制寄存器(CANCON),它具有两个功能,读CANCON意味着访问CAN控制器的中断寄存器,写CANCON意味着访问命令寄存器;(4)状态寄存器(CANSTA),具有两个功能,读CANSTA是访问CAN控制器的状态寄存器,写CANSTA是为后续的DMA传输设备内部数据存储器RAM的地址。此外,DMA逻辑允许CAN控制器与CPU在片主RAM之间的高速数据交换。

 

  在芯片初始化阶段,CPU通过向CANCONCANSTA写入内容,完成CAN控制器的功能初始化。在实际通讯过程中,CPU则利用四个寄存器使CAN控制器接收和发送数据信息。

 

 2逆变电源系统硬件构成

 

  电动车用辅助三相逆变电源从结构上可以分为三个部分:(1DC/DC多路电源——自动适应直流输入端的大范围电压浮动,为系统的其它电路提供彼此隔离且电压稳定的低压电源;(2)主控制板——检测各路输出的电压、电流,根据运行情况智能调整逆变电路的输出,通过CAN总线参与整车数据通讯;(3)主功率逆变电路——由高度集成的三相逆变模块IPM组成,完成主电路的逆变功能。

 

 

 31 数据校准

 

  为降低器件和系统的偏移误差和增益误差,需要采用校准方法。MSC1210或整个系统的偏移、增益误差可以通过校正来减少影响。

 

  校正功能ADCCON1寄存器(SFR DDH)CAL20位控制每个校准过程需7tDATA周期,因此,完成偏移和增益校准需要14rDATA周期。在校准完成后,当中断允许时,会产生AD转换中断。校正完成以后AD转换器中断位置为1,表示校正结束可以读取有效数据,相关程序代码如下:

 

  ADCON1=0X01 //初始化增益和偏移自校准

 

  while(!(AISTAT&0X20)) //等待中断触发

 

  32 数据采集

 

  采用台达DOP人机界面软件ScreenEditor开发平台,编制数据采集与存储系统,使用CAN网络协议与下位机通讯,进行称重数据的实时采集,具体应用于称重系统采集测试系统中。数据采集界面如图5所示。

 

  33 提高精度采取的其他措施

 

  为保证得到一个高精度的测试系统,除了使用高精度A/D转换器外,系统中的其他模块设计也对整个系统精度有很大的影响。

 

  (1)传感器是整个系统的核心,要获得可靠的数据源就要注意电阻式应变传感器的安装方式,传感器的底座安装面应平整、整洁,无任何油膜、胶膜等存在。安装底座要求高于传感器本身的强度和刚度。安装底座的安装面要用水平仪调整水平。安装时不能采用普通平垫圈,应使用弹簧垫圈。在给传感器加载受力时,要按传感器加载受力方向加载,避免横向或附加扭矩力。

 

  (2)数字器件和模拟器件独立供电,对电源进行稳压,并加滤波电路,以免电源噪声对系统产生影响。为防止传导型高频电磁干扰,在传感器信号输出端及电源线上加屏蔽珠。在PCB布线时应尽量将数字部分和模拟部分隔离,数字地与模拟地隔离。

 

  系统能够稳定运行,测量结果满足精度要求,显示分辨率为140 000。数据稳定时间小于1 s

 

  4 结束语

 

  该CAN总线的称重数据采集方案适用于组合称重或选别称重的环境下对称重传感器信号的采集与存储,经工厂环境的实践检验,证明系统能够长时间稳定运行,具有较好的应用前景,同时也可运用在车辆称重系统。

品牌社区
—— 造车工艺 ——
—— 数字化制造 ——
—— 智能驾驶 ——
—— 新能源技术 ——
—— 机器人技术 ——