2025年10月31日
TE2025年10月30日
罗克韦尔2025年10月24日
采埃孚2025年10月24日
兆易创新2025年10月24日
欣旺达2025年10月27日
魏德米勒
2025年10月22日
倍福
2025年10月16日
罗克韦尔
2025年10月16日
明珞装备
2025年10月11日
EMAG
2025年10月31日
海克斯康
2025年10月24日
Melexis
2025年10月24日
倍加福
2025年10月23日
科尔摩根
2025年10月23日
海康机器人
张鑫 杨政
中航工业西安飞机工业公司 陕西西安 710089
摘要:本文通过HyperWorks软件在某型飞机前服务门机构多体动力学仿真中的应用,展示了MotionView模块强大的机构多体仿真分析功能。借助MotionView对前服务门机构建立多体仿真动力学模型,理清舱门各个机构的运动原理,结合实际工况,完成舱门运动过程模拟,得到运动体的运动轨迹以及承受的力或力矩值曲线。使用刚柔耦合多体模型,可计算得到各构件在运动过程中的应力和变形大小。可根据分析仿真结果,找出机构中的可调节量,提出改进方案并予以验证。
关键词:前服务门 机构 多体动力学 仿真 刚柔耦合
前服务门为半堵塞外开式舱门,是装卸载飞机上的生活设施和乘客物品的主要通道,主要功能是作为前客舱的承力门,次要功能是作为I型应急出口。为了保证飞机舱门的各项功能要求,前服务门机构运动关系复杂,连杆、铰链数量众多。由于机构中各构件几何形状、载荷及多体运动的复杂性限制,运动过程中零部件干涉和接头、关键件的受力及变形情况分析,应用材料力学和弹性力学或经验估算的方法计算时,往往得不到足够精度的分析结果,造成实际局部机构安全域度偏大或强度刚度不足。
通过多体动力学方法,借助HyperWorks软件多体仿真模块对前服务门机构建立刚体系统仿真模型,理清舱门各个机构的运动原理,结合各种工况,完成舱门运动过程模拟,分析仿真结果,找出机构中的可调节量,提出改进方案并予以验证。以刚体模型为基础,加入关键部件的柔性体,得到其运动过程中的应力和变形情况,验证其强度、刚度,并作为进一步优化的依据。
前服务门多体动力学模型采用CAD建模法,利用CAD软件CATIA建立的舱门机构三维模型得到。模型质量属性:将构件赋予材料属性,测量得到其质量、质心坐标以及质心转动惯量等,手动输入MotionView或通过进入.mdl文件编辑。模型外形由CATIA模型经过压缩导入MotionView环境。机构中弹簧刚度系数按设计图纸计算给出,弹簧预载荷通过弹簧初始安装角度或压缩长度计算得到。运动机构转轴用衬套连接处在多体动力学模型中处理成衬套元素,根据资料预估各方向刚度和摩擦系数。
首先对前服务门机构建立刚体多体动力学模型。前服务门机构主要包括:提升机构、提升助力机构、插销锁机构、上位锁机构、手柄机构、主摇臂、辅助摇臂、平衡杆、阵风锁机构等。前服务门多体动力学模型包含有多个子系统,子系统之间是相互链接的,每个子系统由运动体、运动副,弹簧,以及作用在运动体上的摩擦力和接触碰撞力等组成。然后对机构主要构件建立柔性体,进行刚柔耦合仿真。
A. 前服务门解锁和提升机构(共34个运动副)。此系统主要由提升机构、提升助力机构、
插销锁机构、上位锁机构、手柄机构、辅助摇臂、平衡杆等组成。共有20个运动体,29个运动副和4个弹簧组成。如图1所示。

B. 前服务门绕固定轴的开启和关闭运动机构。此系统主要由主摇臂、辅助摇臂、平衡杆等组成。共有3个运动体,6个运动副组成。如图2所示。

C.插销锁机构。此系统主要由双曲柄组件、台阶轴组件、锁销组件、锁销盒组件等组成。共有4个运动体,4个运动副和1个弹簧组成。如图3所示。

D.上位锁机构。此系统主要由扭簧、锁环组件、调节拉杆、锁钩组件、可调拉杆等组成。共5个运动体,5个运动副和1个扭簧组成。如图4所示。

E.滑槽座。此系统主要由滚轮、滑槽座等组成。共有1个运动体、1个运动副以及碰撞接触力。如图5所示。

F.前服务门密封带摩擦力和压缩力。此系统给前服务门两侧施加密封带摩擦力。 力值函数表达式:(-1)*VARVAL({ng})。
前服务门多体动力学模型子系统之间的链接关系见表1。

表1 子系统之间的链接关系
在多体动力学刚性系统模型的基础上,将机构支座、平衡杆、辅助摇臂和替换成柔性体,机构杆件与机构杆件之间通过刚性单元连接,螺栓采用刚性单元模拟。图6是要建立柔性体部件的有限元模型,图7转轴细节有限元模型。


根据前服务门开启和关闭的运动原理,建立了二种分析工况。包括模拟用内外手柄操纵舱门开启和关闭时的分析工况。输出了舱门运动过程中部分运动体的力或力矩曲线,如手柄力矩曲线,助力弹簧力值曲线等。从手柄力矩曲线和实测的手柄力对比,数值比较接近。
该工况首先使用刚体动力学模型,运动驱动施加在内手柄铰链处,模拟内手柄操纵前服务门解锁及提升(0-5秒),前服务门绕固定轴旋转打开(5-8秒)。然后前服务门绕固定轴旋转关闭(10秒开始),最后搬动手柄,前服务门向下运动,关闭到位(12-17秒)。
在整个模拟运动过程中,不仅能够观察到每个运动体的运动轨迹,如滚轮在滑槽座内的运动轨迹。还能够得到运动体或运动副的力或力矩值,如内手柄的开启(实测力矩最大值16900N·mm)和关闭(实测力矩最大值10300 N·mm)力矩曲线,助力弹簧力值曲线等。内手柄的开启力矩曲线如图10所示,关闭力矩曲线如图11所示。仿真结果与实测结果相近,较好地反映了实际工况。
A 内手柄开启力矩
内手柄开启力矩值曲线见图8,横轴表示时间,纵轴表示力矩值,最大力矩值15338N·mm。

B 内手柄关闭力矩
内手柄关闭力矩值曲线见图9,横轴表示时间,纵轴表示力矩值,最大力矩值9230N·mm。
图9 内手柄关闭力矩值曲线
使用前服务门刚体动力学模型,模拟外手柄操纵前服务门解锁及提升(0-5秒),前服务门绕固定轴旋转打开(5-8秒)。然后前服务门绕固定轴旋转关闭(10秒开始),最后搬动外手柄,前服务门向下运动,关闭到位(12-17秒)。
由于外手柄与内手柄联动,除了外手柄与内手柄的开启和关闭力矩曲线不同外,其余运动体的轨迹和受力情况基本相同。外手柄的开启力矩曲线如图10所示(实测最大力矩值47600 N·mm),关闭力矩曲线如图11所示(实测关闭最大力矩值19500 N·mm)。仿真结果与实测结果相近,较好地反映了实际工况。
A 外手柄开启力矩
外手柄开启力矩值曲线见图10,横轴表示时间,纵轴表示力矩值,最大力矩值41785N·mm。

B 外手柄关闭力矩
外手柄关闭力矩值曲线见图11,横轴表示时间,纵轴表示力矩值,最大力矩值17658.7N·mm。

使用刚柔耦合多体模型,运动驱动施加在内手柄铰链处,计算得到机构杆件在运动过程中的应力和变形大小。根据仿真结果,构件应力、变形均小于许用值,构件满足强度刚度要求。
4.1 平衡杆应力及变形计算结果

4.2 辅助摇臂应力及变形计算结果


