2025年10月31日
TE2025年10月30日
罗克韦尔2025年10月24日
采埃孚2025年10月24日
兆易创新2025年10月24日
欣旺达2025年10月27日
魏德米勒
2025年10月22日
倍福
2025年10月16日
罗克韦尔
2025年10月16日
明珞装备
2025年10月11日
EMAG
2025年10月31日
海克斯康
2025年10月24日
Melexis
2025年10月24日
倍加福
2025年10月23日
科尔摩根
2025年10月23日
海康机器人
各种车辆功能推陈出新,传统的域架构 (Domain Architecture)也面临挑战。本文将介绍交通运输行业如何采用分区架构 (Zonal Architecture)来提升车辆的简易性、效率、维护和制造。
在飞速发展的汽车制造领域,正在从过去满载 ECU 的汽车向未来以数据为中心的流线型汽车转变。分区架构的概念正在重新定义从车辆设计到道路行驶性能、维护和制造流程等各个方面。
汽车行业正处于变革,分区架构的整合有望提升车辆设计的效率和连接性。这项技术的革新简化了以往过于复杂的系统,为汽车电子产品树立了标杆。

什么是域架构和分区架构?
域架构和分区架构是汽车电气架构的两种设计方法。长期以来,域架构一直是提供汽车功能的传统方法,但汽车性能和消费者的需求正在迫使业界转向更灵活的分区架构。然而,上举需要大规模设计转变,要求细心筹划每一个开发步骤以及每一级架构。
什么是域架构?
域架构是一种按照功能构建车辆电气架构连线的方法,从而为整车提供控制功能。无论是动力系统、安全系统还是信息娱乐系统,每功能项目群组都有自己的域控制器。
但几十年来,随着新系统和新功能的增加,汽车内部的线路连接日渐增加。从电源到电子控制单元(ECU)及设备的重复连接,导致布线冗余且拥挤。这种逐渐累积的布线被认为是扁平的架构,使得汽车设计难以扩展。
域架构一直在努力摆脱平面布局,以提高适应性。目前,大多数制造商都采用了以域为中心的设计,但域架构也面临着新的限制。单个域可以横跨整个车辆;事实上,大多数车辆都是如此,而且每台设备都需要与控制器进行独特的连接。这种复杂的跨车辆(vehicle-spanning)域网络需要极其大量的布线,既增加了重量,又降低了效率。
采用传统架构或域架构的车辆需要安装 100 到 150 个ECU,每个ECU单元都需要自己的专用线路,这就形成了非常复杂和耗费空间的线束系统。值得注意的是,虽然汽车系统的其他部分已转向自动化或机器人装配,但这些线束仍然需要针对每种车型进行定制和手工装配。
尽管域架构相比传统的平面布线系统有所改进,但它只是向完全模块化的可适应方法迈出了一步,并未达到成功。
什么是分区架构?
分区架构将电气控制器分散到多个模块区或硬件网关,这些模块区或硬件网关分布在车辆的各个位置。各种功能的设备连接到最近的网关,而不是采用域分组形式。分区架构将每组电气功能分配给专用的分区控制器,从而重新规划了汽车电子设备的整体线路方案。这种战略性的控制器布局大大缩短了布线长度,简化了电源和信号传输,并且释放更多空间,为将车辆打造成车轮上的数据中心奠定了基础。

分区架构的优势
通过将设备和计算机控制建构在孤立的中枢之内,提供了所需的可扩展性以容纳高速数据和各种电子系统。此外,分区架构还为汽车制造商带来了效率、安全、维护和生产方面的多项全新优势。
1、减轻铜缆重量
传统汽车设计使用大量铜线,显着增加了车辆的重量,这不利于提高效率和性能。有些线束配置包含长达5 公里的电线。域系统布线在车辆重量中平均占了 45 至 55 公斤,最大约为 68 公斤。
采用分区架构进行试验的汽车生产线,如特斯拉的 Model 3生产线,大大缩短了布线长度(从3千米缩短至 1.5 千米),线束总重量则显着减少了 85%。
通过减少沉重的布线,分区设计显着减轻了车辆重量。这对电动汽车(EV)尤其有利,因为每减轻一公斤重量,就能增加续航里程并提高性能。随着车辆从 12V 转向 48V 电气系统,进一步改善了重量减轻状况,因为 48V电气系统能够以更低的电流提供相同的功率,从而减低电线的直径和相应的重量。由于导线更细、布线更简单,设计人员还可以腾出更多空间来容纳其他系统。

2、提高数据和电源可靠性的耐久性
传统的车辆系统经常受到运行环境的影响,连接器尤其容易受到车辆日常使用中的频繁冲击和振动所影响。域架构的集中布局更容易出现全面的故障,在这种情况下,一个错误就可能导致整个电气网络瘫痪,从而增加出现安全问题的风险。
更先进、更坚固的连接器增强了分区系统的耐用性,这些连接器件经过精心设计,能够承受极端温度、进水和振动等路况,确保不间断供电和高速数据传输。在区域内,故障安全协议可以隔离故障,防止出现大面积电气故障。这种额外的耐久性对于先进驾驶辅助系统(ADAS)和新兴的自动驾驶汽车领域的安全性和功能性至关重要。
3、简化维护和更新
传统电气系统的维护十分耗时。机械师必须了解每个复杂系统的细微布线,因此即使是简单的检修、修理和更新也是劳动密集型的过程,往往需要专门的技能和设备。这种复杂性还增加了维修某项功能进行时破坏其他功能的风险。
分区架构的通用模块化方法使得人们很容易改进或维修车辆,从而大大减少停机时间和成本。隔离的分区使得检查、诊断和故障排除变得十分简单,普通技术人员都能够处理。
分区架构还可以通过 Wi-Fi 或 5G 等方式从远程部署软件更新,使得车辆保持最新功能、更新和安全补丁,而无需技术人员和人工参与。

4 、提高制造和装配效率
集成域架构汽车的生产运作历来都是劳动密集型的,尤其是在制作单个线束时。每个线束都是为特定产品量身定制。车辆装配线上的每一个工位都要为每一项功能绑扎和连接电线,这个过程十分繁琐。
随着采用分区模式,制造流程正处于一场重大革命的边缘。分区架构的标准化和模块化设计有利于简化装配生产线,特点是预装配线束和即插即用互连。这些进步提高了电气子系统的灵活性、自动化程度,减少了错误,并大幅降低了制造成本。
大幅提高效率不仅有利于制造商,也有利于消费者,因为这有可能带来更经济实惠的汽车。

与Molex共同探索分区架构时代
在汽车设计中采用分区架构标志着运输行业的关键性转变,解决了长期困扰汽车制造商的复杂性、重量、耐用性、维护和装配等主要难题。
随着运输行业在 ADAS、电气化和共享交通模式方面不断创新,分区架构成为未来运输行业发展的新基础。
Molex莫仕处于这项重要变革的前沿,利用丰富的工程专业知识开发连接器和系统,确保未来的汽车不仅更先进,而且可靠、高效、适应性强。例如,我们的MX-DaSH数据-信号混合连接器在设计时考虑到了分区,在单一紧凑型连接器系统中结合了传统的电源和信号以及高速数据。